2/5/2016 FireFly Custom Controls Page 1 of 22

1 Preface

FireFly allows the use of controls that were written and contributed by mere mortals. But
interfacing these controls to FireFLy has been a mystery due to the absence of documentation. |
wanted to remedy this situation so | looked very carefully at custom controls that were created by
others. | believe that | figured out most of the mystery, but not all.

Any help in improving this document would be greatly appreciated.

1.1 Author
Name Robert A. Rioja
e-mail RobRioja@gmail.com

1.2 With a little help from

Name: SeaVipe

1.3 Need Help

All text in RED should eventually be eliminated. Your help is needed to make this happen.

2/5/2016 FireFly Custom Controls Page 2 of 22

2 Table of Contents

LI e 51T = USRS 1
R U 1 o T PSP PPTTRP 1
1.2 With alittle help from. ... 1
RS T (== o I o = o R 1

A =Y o (=30 B 7 0] g1 (=1 o] 1= S 2

S FOIAErs @nd fllES... .o 4

C o | | 1= o o = PP 5
I 11 1= T T TP PP OSSP 5
N o] a1 (o] IS 1o) o 1P 5

B I oo g o] =T o 1= Y 5
A o [Tod o) (o o TP 5
R - 11 1 0T | SR EPPPPPPRRRPPN 6
R o] 0)Y/ [| 1 ST 6
Y 1= <1 (o] o TSSO 6
4.2.6 All_filENAMIE. ... s 6
S o | I =0 U1 =T S 6
4.2.8sll_filename..........oooo o 6
e I | I =Y o [0 11 =Y 6
4.2.10 SOUICE_fIlENAME......eeeee e e e e e e e e e e e e e e e eesanaas 6
4.2.11 100IDOX _DItMIAD .. 6
V2 37200 1228 (o To | o To) Qo U 1=] SR 6
4.2.13 100IDOX_T00IIP ... 7
L 7 3o [11 011 (= PP 7
S T o o U= Lo S 7
o LU LT o7 Vo | [T o] = Y2 7
4.2.17 use_initialize_aCtioN..........coooiiiiiieeieeeeeeeeeeeeeeeeee e 7
4.2.18 initialize_action_deSIgNEr........cooo i 7
v S e oY1 (=1 V4= Y= Ve 1o T o o = TS 7
O o (o] 01T 4V o] U o | SRR 7
A B 4 1T TS To TR o101 o | TP 7
4.2.22 AllOW_SYSEEM _COIOIS... ..ot e e e e et e e e e e et e e e et e e eeannas 8
LAl (=To [(o 18 o] oo) G TP 8
O o == | (== (o[]S 8
4.2.25 Other Control Section ParamMeEters.......ccoooe i 10
4.3 Property SECHON..........coo o, 11
Gt I ¢ = o 1 ST 11
4.3.2 CUIVAIUE.. ... s 11
G T B 1 (=10 4117 01T PRSPPSO 11
g CoT o= 1= TSRS 12
g I\ =10 1= TP PPIP 12
1 Y] [12
i o To 11 | OSSPSR 12
i @ o] a1 (o] | [o = 12
Y o] o | SRS RPPPRPR 12
G =1 T | o RPN 13

A = | SO SO ST OP PP PPPRRRPRPTPR 13

2/5/2016 FireFly Custom Controls Page 3 of 22

T o Yo (=Y TR 13
B, TOP . i 13
L O VLA o (o TR 13
Ly By I = 7= Yol 1070 (o) 14
S 2 - T o] (o o P 14

A A N3 RESIZERUIES......coeeeeeeeeeeeeee et e e et e e e e e e e e e e e eaeeeranes 14
4.5 MESSAGES SECHONS.ttt e e e e e e e e e e e e e e e s e bbbt e e e e e e e e e e e as 15
4.5.1 CUSIOM FUNCHONS......eeeiiiiee ettt e e et e e e e et e e e e e et e s e e eba e esanaes 15
4.5.2 WINAOWS FUNCHONS.ottt e et e e e e et e e e e e e e e e e e s e saeeeeasaenneees 15
O8I (o] gt O] a1 (o] I OT =T 11 o] o FO 16
(SR @1 L@\ N IS 1 U [(U [= 17
ST AV, =T 0 1 0T £ 17
0t I 1. =1 o) SRR 17
LT 2 1 YA o | o T 18

L G 1 =ETor=1 o= 0 1= o SRR 18
ST I (O T=T 0] =1 1 [0] o 1 18

T BT 1 VA= o] o | SRR 18
(ST I 1 17= TR 18
LT A 110 1 1o 1= 11 T 19
LT IR T 153 (1 (ST LU 19
(ST IR B 10 aT= T 1= TR 19
ST I O I (O U { = =To 1= (] o 20
B.1. 11 HCIIPPIECISION. ... e e e e e e e e ssnnneeeaeeenes 20
0 U 220 1 U= 11 SRR 21
6.1.13 fPItChANAFAMIlY.....oooi e 22

B.1. 14 ITFACEINAIME. ... e e 22

2/5/2016 FireFly Custom Controls Page 4 of 22

3 Folders and files

FireFly custom controls are stored in a folder called CustomControls within the installation
folder. It contains sub-folders named after the authors of the individual custom controls. | call
these folders Author Folders. Each of these sub-folders contain sub-sub-folders, one for each
custom control written by an author. | call these folders Control Folders.

Each Control Folder contains the files needed by a custom control. Some of these files are
absolutely required. Others are optional. For example, let’s say that there is a control called
YourControl. Its folder will contain the required:

C_YourControl.cur
N_YourControl.bmp
YourControl.ctl

YourControl.dll or YourControl.sll
YourControl.inc

The . cur file is a graphic, in standard Windows cursor format. It contains the image that will
appear in the Tools tab of the FireFly Workspace window, where all of the controls are listed.

The standard name of this file is “C_", followed by the name of your control, followed by “. cur”.

The .bmp file is a graphic, in standard Windows bitmap format. It contains the same image as the
cursor file. The standard name of this file is “N_", followed by the name of your control, followed by
“.bmp”. | do not know the purpose for the bitmap file.

The . ctl file is a text file which gives FireFly all the information it needs to create and manage the
control. Its format is described in another section. The standard name of this file is the name of
your control, followed by “.ctl”.

The .d11 file contains the compiled code that you wrote to make your control work. It is typically
written in PowerBasic and compiled into a dynamically linked library. The standard name of this
file is the name of your control, followed by “.d11”.

Alternately, you can compile your code into a statically linked library. The standard name of this file
is the name of your control, followed by “.s11”".

The . 1inc file is a PowerBasic source file which can provide your FireFly program with data it will
need to know to use your control. This might include defined constants, etc. The standard name
of this file is the name of your control, followed by “. inc”. This file could also contain all of your
control’s code, so that neither a DLL nor a SLL would be needed.

Other files which might be needed by your control should also be placed in this Control
Folder.
Here we could use a description of other types of files.

2/5/2016 FireFly Custom Controls Page 5 of 22

4 .ctl File Format

The .ctl file is a text file that can be created with any text editor. However, its contents,
organization and format should be followed as described here.

The file contains a title line followed sections which are named by specific section names enclosed
in brackets. Blank lines are used to separate the sections only to make the text more readable.
Each section contains parameters which are formatted as:

parameter = value

where parameter is the name of a parameter and value is the value assigned to that parameter.
Each parameter name is predefined.

4.1 Title Line

The first line is not a named section and always contains the following text:

#FireFly_Custom_Control#

4.2 Control Section

The Control Section is the first section. There can only be one Control Section. It contains general
information about the control. Here is an example:

[Control]

controlname = MyControl

description = This control is a custom thingymagiggy.
author = John Doe

Here is a list of control section parameters:

4.2.1 controlname

Name of the control. It will also be shown in the About box if your control has one. Example:
controlname = MyControl

4.2.2 description

A short description of the control. It will also be shown in the About box if your control has one.
Example:
description = This control is a custom thingymagiggy.

2/5/2016 FireFly Custom Controls Page 6 of 22

4.2.3 author

Your name. It will also be shown in the About box if your control has one. Example:
author = John Doe

4.2.4 copyright

Your copyright message. It will also be shown in the About box if your control has one. Example:
copyright = John Doe, All Rights Reserved 2016

4.2.5 version

Your version number. It will also be shown in the About box if your control has one. Example:
version - 1.23

4.2.6 dll_filename

Name of your .dll file. It will also be shown in the About box if your control has one. Example:
dll_filename = MyControl.dll

4.2.7 dll_required

1 means that the control's code is in a DLL file. 0 means that a DLLis not required. Example:
dll_required = 1

4.2.8 sll_filename

Name of your .sll file. It will also be shown in the About box if your control has one. Example:
sll _filename = MyControl.sll

4.2.9 sll_required

1 means that the control’s code is in a SLL file. 0 means that a SLLis not required. Example:
sll required = 1

4.2.10 source_filename

Name of your .inc file. It will also be shown in the About box if your control has one. Example:
source_filename = MyControl.inc

4.2.11 toolbox_bitmap

Name of your .bmp file. Example:
toolbox_bitmap = N_MyControl.bmp

4.2.12 toolbox_cursor

Name of your .cur file. Example:

2/5/2016 FireFly Custom Controls Page 7 of 22

toolbox_cursor = C_MyControl.cur

4.2.13 toolbox_tooltip

Short description of your control. Not sure where this is used. Example:
toolbox_tooltip = My custom control

4.2.14 delimiter

Character used as delimiter for later parameters that require more than one value. Example:
delimiter = |

4.2.15 uniqueid

A unique identifier shown in braces. Shown in About. | don’t know why this is needed, nor how
to obtain it. Example:
uniqueid = {12345678-1234}

4.2.16 use_loadlibrary

Value of 0 or 1. | don’t know what this is for. Example:
use_loadlibrary = 1

4.2.17 use_initialize_action

Value of 0 or 1. | don’t know what this is for. Example:
use_initialize_action = 0

4.2.18 initialize_action_designer

| don’t know what this is for. Example:
initialize_action designer =

4.2.19 initialize_action_code

| don’t know what this is for. Example:
initialize_action code =

4.2.20 property_count

| don’t know what this is for. Example:
property_count = 10

4.2.21 message_count

| don’t know what this is for.
message_count = 10

2/5/2016 FireFly Custom Controls Page 8 of 22

4.2.22 allow_system_colors

Value of 0 or 1. | don’t know what this is for. Example:
allow_system_colors = 0

4.2.23 isgroupbox

Value of 0 or 1. | don’t know what this is for. Example:
isgroupbox = 0

4.2.24 create_action

Specifies a function (and its parameters) which tells Windows to create your control. It's value is a
string containing several parameters separated by the delimiter specified by delimiter. An
example is:

USER32.DLL |CreateWindowEx |CreateWindowEXA|BYVAL LONG //CTRL_EXSTYLE//|
BYVAL ASCIIZ MYCONTROL |BYVAL ASCIIZ //CTRL_CAPTION//|BYVAL LONG
//CTRL_STYLE//|BYVAL LONG //CTRL_LEFT//|BYVAL LONG //CTRL_TOP//|BYVAL
LONG //CTRL_WIDTH//|BYVAL LONG //CTRL_HEIGHT//|BYVAL LONG
//CTRL_PARENT//|BYVAL LONG //CTRL_ID//|BYVAL LONG //CTRL_INST//|BYVAL
ANY %NULL

The string does not contain any actual data. It just has place holders for the data. Itis interpreted
as follows:

Parameter Description

USER32.DLL Name of DLL containing the function which will create
the control.

CreateWindowEx Name of function which will create the control.

CreateWindowExA Name of function which will create the control. | don’t
know why we need this twice.

BYVAL LONG //CTRL_EXSTYLE// Extended style flags.

BYVAL ASCIIZ MYCONTROL Explain?

BYVAL ASCIIZ //CTRL_CAPTION// Explain?

BYVAL LONG //CTRL_STYLE// Style flags.

BYVAL LONG //CTRL_LEFT// Left property.

BYVAL LONG //CTRL_TOP// Top property.

BYVAL LONG //CTRL_WIDTH// Width property.

BYVAL LONG //CTRL_HEIGHT// Height property.

BYVAL LONG //CTRL_PARENT// Windows handle for the control’s parent, usually the
form that the control is in.

BYVAL LONG //CTRL_ID// Window handle for the control.

2/5/2016 FireFly Custom Controls Page 9 of 22
Parameter Description

BYVAL LONG //CTRL_INST// Explain?

BYVAL ANY %NULL Explain?

Another example:

MYCONTROL .DLL |MYCONTROL_CREATE |MYCONTROL_CREATE |BYVAL LONG
//CTRL_PARENT//|BYVAL LONG //CTRL_ID//|BYVAL LONG //CTRL_LEFT//|BYVAL
LONG //CTRL_TOP//|BYVAL LONG //CTRL_WIDTH//|BYVAL LONG //CTRL_HEIGHT//|
BYVAL LONG //CTRL_STYLE//|BYVAL LONG //CTRL_EXSTYLE//

Parameter

Description

MYCONTROL.DLL

Name of DLL containing the function which will create the control.

MYCONTROL_CREATE

Name of function which will create the control.

MYCONTROL_CREATE

Name of function which will create the control. | don’t know why
we need this twice.

BYVAL LONG Windows handle for the control’s parent, usually the form that the
//CTRL_PARENT// control is in.

BYVAL LONG Window handle for the control.
//CTRL_ID//

BYVAL LONG Left property.
//CTRL_LEFT//

BYVAL LONG Top property.

//CTRL_TOP//

BYVAL LONG Width property.
//CTRL_WIDTH//

BYVAL LONG Height property.
//CTRL_HEIGHT//

BYVAL LONG Style flags.
//CTRL_STYLE//

BYVAL LONG Extended style flags.

//CTRL_EXSTYLE//

CreateWindow(

1pClassName as
lpwindowName as

dwStyle as
X as
y as
nwidth as

nHeight as

LPCTSTR, ' pointer to registered class name
LPCTSTR, ' pointer to window name

DWORD, " window style

integer, ' horizontal position of window
integer, ' vertical position of window
integer, ' window width

integer, ' window height

2/5/2016

hwndParent
hMenu
hInstance
1pParam

) as DWORD

as
as
as
as

HWND,
HMENU,
HANDLE,
LPVOID

FireFly Custom Controls Page 10 of 22

handle to parent or owner window

handle to menu or child-window identifier
handle to application instance

pointer to window-creation data

4.2.25 Other Control Section parameters

There may be other Control Section parameters that | do not know about.

2/5/2016 FireFly Custom Controls Page 11 of 22

4.3 Property Section

The Properties tab of the FireFly Workspace window shows the properties of each control.
You can specify which of your control’s properties are available by defining them in Properties
Sections. You can have as many Properties Sections as there are properties in your control. For
each property, you must specify its name, current value and type. For certain properties, you will
also have to specify other parameters. Examples:

[Property]

name = name| (Name)
curvalue = mycMyControl
itemtype = Edit|1
[Property]

name = windowstyles| (WindowStyles)
curvalue =

itemtype = Styles
[Property]

name = locked|Locked
curvalue = False
itemtype = Combo
cmbitems = False|True
equates = False|True
4.3.1 name

The first parameter contains two delimited values. The first specifies the property. The second
specifies the text that will appear in the first column of the Properties tab in the FireFly
Workspace. Example:

name = name| (Name)

The name of the property is name. This is confusing but | don’t know a better way to explain
it. The text that will be shown is (Name).

Another example:
name = windowstyles|(WindowStyles)

The name of the property is windowstyles, the text displayed is (WindowStyles).

4.3.2 curvalue

Current (or default) value of the property. Example:
curvalue = mycMyControl

4.3.3 itemtype

This parameter defines the type of interface between the user and the property. It may contain
more than one value, separated by the delimiter. Example:

2/5/2016 FireFly Custom Controls

itemtype = Edit|1

This is an editable text box. 1 don’t know what the second value does.

4.4 Properties

The following are examples of common properties:

Page 12 of 22

4.4.1 Name

Control name. This property uses an editable text box.

[Property]

name = name | (Name)

curvalue = mycMyControl

itemtype = Edit|1

4.4.2 Styles

Window styles. This property uses a pop-up window full of check boxes.
[Property]

name = windowstyles| (WindowStyles)

curvalue =

itemtype = Styles

4.4.3 About

About box. This shows the user some information about the control in a pop-up window.
[Property]

name = about|About

curvalue =

itemtype = About

4.4.4 Controlindex

Allows user to enter an index for a control array member.

[Property]

name = controlindex|ControlIndex
curvalue =0

itemtype = Edit|1

4.4.5 Font

Control’s font. This property uses the Windows standard font selection dialog. For an explanation

of the parameters, see section 6.

2/5/2016 FireFly Custom Controls Page 13 of 22

[Property]

name = font|Font
curvalue = Tahoma, -13,0,0,0,400,0,0,0,0,3,2,1,34
itemtype = Font

4.4.6 Height

Control’s height.

[Property]

name = height|Height
curvalue =

itemtype = Edit|True
4.4.7 Left

Control’s left coordinate.
[Property]

name = left|Left
curvalue =

itemtype = Edit|1

4.4.8 Locked

Control’s lock. This property uses a combo box. Therefore the cmbitems and equates
parameters are used.

[Property]

name = locked|Locked
curvalue = False
itemtype = Combo
cmbitems = False|True
equates = False|True
4.4.9 Top

Control’s left coordinate.
[Property]

name = top|Top

curvalue =

itemtype = Edit|1

4.4.10 Width

Control’s width

2/5/2016 FireFly Custom Controls Page 14 of 22

[Property]

name = width|width
curvalue =

itemtype = Edit]|1

4.4.11 BackColor

Control’s back color. Need description of prop_action.

[Property]

name = backstyle|BackStyle
curvalue = 0 - Transparent

itemtype = Combo

cmbitems = 0@ - Transparent|l - Opaque
equates = 1|2

prop_action USER32.DLL |SendMessage |SendMessageA|BYVAL LONG
//CTRL_HWND//|BYVAL LONG 1028 |BYVAL LONG //PROP_VALUE//|BYVAL LONG 1

4.4.12 Caption
Control’s caption

[Property]

name = caption|Caption
curvalue = RRButton
itemtype = Edit|o

4.4.13 ResizeRules

Set control’s resizing rules.

[Property]

name = resizerules|ResizeRules
curvalue =0

itemtype = ResizeRules

2/5/2016 FireFly Custom Controls Page 15 of 22

4.5 Messages Sections

Your control will have callback functions (event handlers) that the user will need to have access to.
There should be one Message Section for each such function, describing the function’s interface.
Standard Windows functions can also be specified, although their interfaces are already defined
and need not be described

4.5.1 Custom Functions

For example, let's assume that your control has a function like this:

MyControl_Clicked (_
ControlIndex As Long,
hwndForm As Dword,
hwndControl As Dword,
ByVal lpButon As Long
) As Long

The Message Section might then look like this:

[Message]

name = MyControl_Clicked

declare = (ControlIndex As Long, hwWndForm As Dword, hwndControl As Dword, BYVAL lpButon As long) As Long
call = FLY_nResult = //MESSAGE// (FLY_ControlIndex, hWndForm, @FLY_pNotify.hwndFrom, lParam)
notification = Notify_ Notification

4.5.2 Windows Functions

If you are using a Windows function like WM_SIZE, then its Message Section would look like this:

[Message]
name = WM_SIZE

2/5/2016 FireFly Custom Controls Page 16 of 22

5 Custom Control Creation

Looking for ideas.

2/5/2016 FireFly Custom Controls Page 17 of 22

6 LOGFONT Structure

This section was excerpted from the Microsoft MSDN web site. You will need this information to
specify fonts, as in section 4.4.5.

The LOGFONT structure defines the attributes of a font. The C++ syntax is as follows:

typedef struct tagLOGFONT {

LONG 1fHeight;

LONG 1fwidth;

LONG 1fEscapement;
LONG 1fOrientation;
LONG 1fweight;

BYTE 1fItalic;

BYTE 1funderline;
BYTE 1fStrikeOut;
BYTE 1fCharSet;

BYTE 1fOutPrecision;
BYTE 1fClipPrecision;
BYTE 1fQuality;

BYTE 1fPitchAndFamily;

TCHAR 1fFaceName[LF_FACESIZE];
} LOGFONT, *PLOGFONT,;

6.1 Members
6.1.1 IfHeight

The height, in logical units, of the font's character cell or character. The character height value
(also known as the em height) is the character cell height value minus the internal-leading value.
The font mapper interprets the value specified in IfHeight in the following manner.

Value Meaning

The font mapper transforms this value into device units and matches it against the cell

>0 height of the available fonts.

0 |The font mapper uses a default height value when it searches for a match.

The font mapper transforms this value into device units and matches its absolute value

<0 against the character height of the available fonts.

For all height comparisons, the font mapper looks for the largest font that does not exceed the
requested size. This mapping occurs when the font is used for the first time. For the MM_TEXT
mapping mode, you can use the following formula to specify a height for a font with a specified
point size:

C++ syntax:

1fHeight = -MulDiv(PointSize, GetDeviceCaps(hDC, LOGPIXELSY), 72);

2/5/2016 FireFly Custom Controls Page 18 of 22

6.1.2 IfWidth

The average width, in logical units, of characters in the font. If IfWidth is zero, the aspect ratio of
the device is matched against the digitization aspect ratio of the available fonts to find the closest
match, determined by the absolute value of the difference.

6.1.3 IfEscapement

The angle, in tenths of degrees, between the escapement vector and the x-axis of the device. The
escapement vector is parallel to the base line of a row of text. When the graphics mode is set to
GM_ADVANCED, you can specify the escapement angle of the string independently of the
orientation angle of the string's characters. When the graphics mode is set to GM_COMPATIBLE,
IfEscapement specifies both the escapement and orientation. You should set IfEscapement and
IfOrientation to the same value.

6.1.4 IfOrientation

The angle, in tenths of degrees, between each character's base line and the x-axis of the device.

6.1.5 fWeight

The weight of the font in the range 0 through 1000. For example, 400 is normal and 700 is bold. If
this value is zero, a default weight is used. The following values are defined for convenience.

Value Weight
FW_DONTCARE 0
FW_THIN 100

FW_EXTRALIGHT {200
FW_ULTRALIGHT 200

FW_LIGHT 300
FW_NORMAL 400
FW_REGULAR 400
FW_MEDIUM 500

FW_SEMIBOLD 600
FW_DEMIBOLD 600
FW_BOLD 700
FW_EXTRABOLD (800
FW_ULTRABOLD |800

FW_HEAVY 900
FW_BLACK 900
6.1.6 Ifltalic

An italic font if set to TRUE.

2/5/2016 FireFly Custom Controls Page 19 of 22

6.1.7 IfUnderline
An underlined font if set to TRUE.

6.1.8 IfStrikeOut
A strikeout font if set to TRUE.

6.1.9 IfCharSet

The character set. The following values are predefined.

ANSI_CHARSET
BALTIC_CHARSET
CHINESEBIGS5_CHARSET
DEFAULT_CHARSET
EASTEUROPE_CHARSET
GB2312_CHARSET
GREEK_CHARSET
HANGUL_CHARSET
MAC_CHARSET
OEM_CHARSET
RUSSIAN_CHARSET
SHIFTJIS_CHARSET
SYMBOL_CHARSET
TURKISH_CHARSET
VIETNAMESE_CHARSET

Korean language edition of Windows:

JOHAB_CHARSET

Middle East language edition of Windows:

ARABIC_CHARSET
HEBREW_CHARSET

Thai language edition of Windows:

THAI_CHARSET

The OEM_CHARSET value specifies a character set that is operating-system dependent.
DEFAULT_CHARSET is set to a value based on the current system locale. For example, when the
system locale is English (United States), it is set as ANSI_CHARSET. Fonts with other character
sets may exist in the operating system. If an application uses a font with an unknown character
set, it should not attempt to translate or interpret strings that are rendered with that font. This
parameter is important in the font mapping process. To ensure consistent results, specify a
specific character set. If you specify a typeface name in the IfFaceName member, make sure that

2/5/2016 FireFly Custom Controls Page 20 of 22

the IfCharSet value matches the character set of the typeface specified in IfFaceName.

6.1.10 IfOutPrecision

The output precision. The output precision defines how closely the output must match the
requested font's height, width, character orientation, escapement, pitch, and font type. It can be
one of the following values.

Value Meaning
OUT_CHARACTER_PRECIS |Not used.
OUT_DEFAULT_PRECIS Specifies the default font mapper behavior.

OUT DEVICE PRECIS Instructs the font mapper to choqse a Device font when the
- - system contains multiple fonts with the same name.

This value instructs the font mapper to choose from TrueType
and other outline-based fonts.
OUT_PS_ONLY_PRECIS Instructs the font mapper to choose from only PostScript fonts.
If there are no PostScript fonts installed in the system, the font
mapper returns to default behavior.
Instructs the font mapper to choose a raster font when the
system contains multiple fonts with the same name.
OUT STRING PRECIS This value is not used by the font mapper, but it is returned

- - when raster fonts are enumerated.
OUT_STROKE_PRECIS This value is not used by the font mapper, but it is returned
when TrueType, other outline-based fonts, and vector fonts are
enumerated.
OUT_TT_ONLY_PRECIS Instructs the font mapper to choose from only TrueType fonts. If
there are no TrueType fonts installed in the system, the font
mapper returns to default behavior.
Instructs the font mapper to choose a TrueType font when the
system contains multiple fonts with the same name.

OUT_OUTLINE_PRECIS

OUT_RASTER_PRECIS

OUT TT_PRECIS

Applications can use the OUT_DEVICE_PRECIS, OUT_RASTER_PRECIS, OUT_TT_PRECIS,
and OUT_PS_ONLY_PRECIS values to control how the font mapper chooses a font when the
operating system contains more than one font with a specified name. For example, if an operating
system contains a font named Symbol in raster and TrueType form, specifying OUT_TT_PRECIS
forces the font mapper to choose the TrueType version. Specifying OUT_TT_ONLY_PRECIS
forces the font mapper to choose a TrueType font, even if it must substitute a TrueType font of
another name.

6.1.11 IfClipPrecision

The clipping precision. The clipping precision defines how to clip characters that are partially
outside the clipping region. It can be one or more of the following values. For more information
about the orientation of coordinate systems, see the description of the nOrientation parameter.

Value Meaning

2/5/2016

FireFly Custom Controls Page 21 of 22

CLIP_CHARACTER_PRECIS

Not used.

CLIP_DEFAULT_PRECIS

Specifies default clipping behavior.

CLIP_DFA_DISABLE

Windows XP SP1: Turns off font association for the font. Note
that this flag is not guaranteed to have any effect on any platform
after Windows Server 2003.

CLIP_EMBEDDED

You must specify this flag to use an embedded read-only font.

CLIP_LH_ANGLES

When this value is used, the rotation for all fonts depends on
whether the orientation of the coordinate system is left-handed or
right-handed. If not used, device fonts always rotate
counterclockwise, but the rotation of other fonts is dependent on
the orientation of the coordinate system.

CLIP_MASK

Not used.

CLIP_DFA_OVERRIDE

Turns off font association for the font. This is identical to
CLIP_DFA DISABLE, but it can have problems in some situations;
the recommended flag to use is CLIP_DFA_DISABLE.

CLIP_STROKE_PRECIS

Not used by the font mapper, but is returned when raster, vector, or
TrueType fonts are enumerated. For compatibility, this value is
always returned when enumerating fonts.

CLIP_TT_ALWAYS

Not used.

6.1.12 IfQuality

The output quality. The output quality defines how carefully the graphics device interface (GDI)
must attempt to match the logical-font attributes to those of an actual physical font. It can be one

of the following values.

Value

Meaning

ANTIALIASED_QUALITY

Font is always antialiased if the font supports it and the size of the
font is not too small or too large.

CLEARTYPE_QUALITY

If set, text is rendered (when possible) using ClearType
antialiasing method. See Remarks for more information.

DEFAULT_QUALITY

Appearance of the font does not matter.

DRAFT_QUALITY

Appearance of the font is less important than when
PROOF_QUALITY is used. For GDI raster fonts, scaling is
enabled, which means that more font sizes are available, but the
quality may be lower. Bold, italic, underline, and strikeout fonts
are synthesized if necessary.

NONANTIALIASED_QUALITY

Font is never antialiased.

PROOF_QUALITY

Character quality of the font is more important than exact
matching of the logical-font attributes. For GDI raster fonts,
scaling is disabled and the font closest in size is chosen.
Although the chosen font size may not be mapped exactly when
PROOF_QUALITY is used, the quality of the font is high and
there is no distortion of appearance. Bold, italic, underline, and
strikeout fonts are synthesized if necessary.

2/5/2016 FireFly Custom Controls Page 22 of 22

If neither ANTIALIASED QUALITY nor NONANTIALIASED_ QUALITY is selected, the font is
antialiased only if the user chooses smooth screen fonts in Control Panel.

6.1.13 IfPitchAndFamily

The pitch and family of the font. The two low-order bits specify the pitch of the font and can be one
of the following values.

* DEFAULT_PITCH
e FIXED_PITCH
* VARIABLE_PITCH

Bits 4 through 7 of the member specify the font family and can be one of the following values.

* FF_DECORATIVE

* FF_DONTCARE

* FF_MODERN

* FF_ROMAN

* FF_SCRIPT

* FF_SWISS

The proper value can be obtained by using the Boolean OR operator to join one pitch constant with
one family constant.

Font families describe the look of a font in a general way. They are intended for specifying fonts
when the exact typeface desired is not available. The values for font families are as follows.

Value Meaning

FF_DECORATIVE |Novelty fonts. Old English is an example.

FF_DONTCARE Use default font.

FF_MODERN Fonts with constant stroke width (monospace), with or without serifs.
Monospace fonts are usually modern. Pica, Elite, and CourierNew are
examples.

FF ROMAN Fonts with variable stroke width (proportional) and with serifs. MS Serif is an

- example.
FF_SCRIPT Fonts designed to look like handwriting. Script and Cursive are examples.

Fonts with variable stroke width (proportional) and without serifs. MS Sans

FF_SWISS o
- Serif is an example.

6.1.14 IfFaceName

A null-terminated string that specifies the typeface name of the font. The length of this string must

not exceed 32 TCHAR values, including the terminating NULL. The EnumFontFamiliesEx function
can be used to enumerate the typeface names of all currently available fonts. If IfFaceName is an
empty string, GDI uses the first font that matches the other specified attributes.

	1 Preface
	1.1 Author
	1.2 With a little help from
	1.3 Need Help

	2 Table of Contents
	3 Folders and files
	4 .ctl File Format
	4.1 Title Line
	4.2 Control Section
	4.2.1 controlname
	4.2.2 description
	4.2.3 author
	4.2.4 copyright
	4.2.5 version
	4.2.6 dll_filename
	4.2.7 dll_required
	4.2.8 sll_filename
	4.2.9 sll_required
	4.2.10 source_filename
	4.2.11 toolbox_bitmap
	4.2.12 toolbox_cursor
	4.2.13 toolbox_tooltip
	4.2.14 delimiter
	4.2.15 uniqueid
	4.2.16 use_loadlibrary
	4.2.17 use_initialize_action
	4.2.18 initialize_action_designer
	4.2.19 initialize_action_code
	4.2.20 property_count
	4.2.21 message_count
	4.2.22 allow_system_colors
	4.2.23 isgroupbox
	4.2.24 create_action
	4.2.25 Other Control Section parameters

	4.3 Property Section
	4.3.1 name
	4.3.2 curvalue
	4.3.3 itemtype

	4.4 Properties
	4.4.1 Name
	4.4.2 Styles
	4.4.3 About
	4.4.4 ControlIndex
	4.4.5 Font
	4.4.6 Height
	4.4.7 Left
	4.4.8 Locked
	4.4.9 Top
	4.4.10 Width
	4.4.11 BackColor
	4.4.12 Caption
	4.4.13 ResizeRules

	4.5 Messages Sections
	4.5.1 Custom Functions
	4.5.2 Windows Functions

	5 Custom Control Creation
	6 LOGFONT Structure
	6.1 Members
	6.1.1 lfHeight
	6.1.2 lfWidth
	6.1.3 lfEscapement
	6.1.4 lfOrientation
	6.1.5 lfWeight
	6.1.6 lfItalic
	6.1.7 lfUnderline
	6.1.8 lfStrikeOut
	6.1.9 lfCharSet
	6.1.10 lfOutPrecision
	6.1.11 lfClipPrecision
	6.1.12 lfQuality
	6.1.13 lfPitchAndFamily
	6.1.14 lfFaceName

