COM Collections

William Pantoja

Prestwood eNews, August 2001 - www.prestwood.com Page 1 of 29
Copyright © 2001 Prestwood. All rights reserved.

Writers
William Pantoja

HTML Coding
William Pantoja

Quality Assurance
William Pantoja
Mike Prestwood

Technical Advisors/Source Code
William Pantoja

Editing
Mike Prestwood

Additional Material
Some of the material in this guide is taken from the following sources and is copyrighted by their respective holders:
?? Borland Delphi 4 VCL source code
?? Borland Delphi 5 VCL source code
?? Borland Delphi 6 VCL source code
?? Microsoft Developers Network (MSDN) Platform SDK

Prestwood eNews, August 2001 - www.prestwood.com Page 2 of 29
Copyright © 2001 Prestwood. All rights reserved.

Table of Contents

Table of Contents 3 Implement Files Collection 14
Add Methods and Properties 14
Introduction 4 Modify the Type Library 15
What is a COM collection? 4 Implement the Class Prototype 15
What is a COM collection used for? 4 Implement the SetPath, AfterConstruction, and
Why would you want to implement a COM collection? 4 BeforeDestruction methods 16
Implement the _NewEnum property 17
Building a COM Collection Interface 5 Implement the Count property 17
The _NewEnum Property 5 Implement the Item method 17
The Count Property 5 Implement the Next method 17
The Item Method 5 Implement the Skip method 18
The Add Method 5 Implement the Reset method 19
The Remove Method 5 Implement the Clone method 19
The IEnumVARIANT Interface 6 Implement Folders Collection 20
The Next Method 6 Add Methods and Properties 20
The Skip Method 6 Modify the Type Library 21
The Reset Method 6 Implement the Class Prototype 21
The Clone Method 6 Implement the SetPath, AfterConstruction, and
BeforeDestruction methods 22
Implementing a COM Collection 7 Implement the _NewEnum property 23
Create a New Project 7 Implement the Count property 23
Create the Objects 7 Implement the Item method 23
Implement the Next method 23
Implement the FileSystem Object 9 Implement the Skip method 24
Add Methods 9 Implement the Reset method 25
Implement the Methods and Properties 10 Implement the Clone method 25
Implement Folder Object 11 Testing the Automation Server 26
Add Methods and Properties 11
Implement the Methods and Properties 12 Resources 29
COM References 29
IDL References 29
Prestwood eNews, August 2001 - www.prestwood.com Page 3 of 29

Copyright © 2001 Prestwood. All rights reserved.

Introduction

The Component Object Model (COM) specification provides a tool to allow developers to create reusable components that are
accessible in many different programming languages. COM objects may be developed in a variety of languages including Delphi and
C++. This guide covers one portion of COM object development: the creation of COM collections.

It is beyond the scope of this guide to discuss the basics of COM object development. Several resources are available which describe
the basics of developing COM objects in detail.

What is a COM collection?

A collection is a set of similar entities that can be manipulated as a group using a single interface. An excellent example of a
collection is the fields collection of an ADO RecordSet. A COM collection is simply the implementation of a collection by a COM server
that follows certain interface guidelines to allow for a standard way of manipulating the items within the collection.

What is a COM collection used for?

A COM collection is an excellent tool for the developer who wishes to allow a developer to use a standard way of manipulating a set
of similar entities. Visual Basict programmers have a simple mechanism for using COM collections: the For...Each...Next
statement.

Whenever a For...Each...Next statement is used to iterate through a collection, Visual Basic uses standard properties and the
IEnumVARIANT interface defined in the COM collection to enumerate through the entities contained within the collection.

Why would you want to implement a COM collection?

Although the are several methods to implementing a collection in COM, by following the specification set forth by Microsoft you make
it easier for developers to manipulate your collection and allow them to utilize the For...Each...Next statement to enumerate the
entities within your collection.

Consider the two following code fragments in Visual Basic which enumerate through the entities within a collection:

Code Fragment 1:

For 1 = 1 To objMyCollection.Count
objMyEntity = objMyCollection.ltem(l)
"Use objMyEntity

Next

Code Fragment 2:

For Each objMyEntity In objMyCollection
"Use objMyEntity
Next

There are several potential problems with the first code fragment. In order for the code to work, a single important assumption was
made: the collection’s first index is 1. Though the standard initial index of a COM collection should always be 1 relative and not O
relative, it assumes that the developer of the collection followed this standard.

The first code fragment also assumes that the index of the collection is an ordinal value. It is possible (and sometimes beneficial) to
create a collection whose unique index is a string rather then a number.

The second code fragment uses the For...Each...Next statement to enumerate through the entities contained within the COM
collection. It makes no assumptions about, and indeed does not need to know, how an element is indexed. In addition, the
developer saves a line of code.

1 References to Visual Basic include Visual Basic, VBScript, and Visual Basic for Applications (VBA).

Prestwood eNews, August 2001 - www.prestwood.com Page 4 of 29
Copyright © 2001 Prestwood. All rights reserved.

Building a COM Collection Interface

Our first task in building a COM collection is creating the collection interface in the type library. When implementing a collection,
there are two properties and a method that are required to be implemented. Two additional methods are optional and you may also
choose to add additional methods and properties that are specific to your own design requirements.

The _NewEnum Property

The first property that is required is the_NewEnum property. The _NewEnum property is read-only and returns an lUnknown
interface to an object which implements the IEnumVARIANT interface and must have a dispatch ID of -4. The _NewEnum
property should also have the hidden attribute to prevent it from showing up Visual Basic's IntelliSense™.

The Microsoft Interface Development Language (MIDL) declaration is as follows:
[propget, id(-4), hidden] HRESULT get__ NewEnum([out, retval] IUnknown **pVal);

Visual Basic uses the _NewEnum property to enumerate the collection when a For...Each...Next is used.

The Count Property

The second property that is required is the Count property. The Count property is read-only returns the number of elements in the
collection.

The MIDL declaration is as follows:

[propget, id(1)] HRESULT get_Count([out, retval] int **pval);

The Item Method

The Item method is the only required method. The Item method takes one or more parameters that indicate an item in the
collection to return. The value returned by the Item method is dependent on the type of items within the collection. If the
collection is a collection of objects, an IDispatch interface should be returned. There should be a way to indicate a unique item in
the collection. The dispatch ID should be 0 and have the uidefault attribute to allow this method to be the default method of the
object.

The template for the MIDL declaration is as follows:
[1id(0), uidefault] HRESULT Item([in] datatype varname, [out, retval] returntype *pVal);

Where datatype varname is one or more parameters used to indicate an item in the collection. returntype is an OLE-safe data type
that is the item returned by the Item method.

For example, if you created a collection of objects that contain name-value pairs, you could declare the Item method as follows:
[id(0), uidefault] HRESULT Item([in] VARIANT Index, [out, retval] IDispatch **pval);

Where the Index parameter takes a variant that could be either the ordinal index of an item in the collection (much like an array) or
a string that refers to one of the name-value pairs. If duplicate names are allowed in this collection, you can reference a single item
in the collection by specifying the ordinal index of an item.

The Add Method

The Add method is an optional method that allows the user to add items to the collection. The parameters (if any) are up to the
developer depending on the design requirements of the collection. However, if a value is returned it should be the same data type
returned by the Item method.

The Remove Method

The remove method is an optional method that allows the user to remove items from the collection. The parameters (if any) are up
to the developer depending on the design requirements of the collection. However, if a value is returned it should be the same data
type returned by the Item method.

Prestwood eNews, August 2001 - www.prestwood.com Page 5 of 29
Copyright © 2001 Prestwood. All rights reserved.

The IEnumVARIANT Interface

The IEnumVARIANT interface provides a method for enumerating a collection of variants, including heterogeneous collections of
objects and intrinsic types. Callers of this interface do not need to know the specific type (or types) of the items in the collection.

The MIDL declaration of the IENUMVARIANT interface is as follows:

L
odl,
uuid((00020404-0000-0000-C000-000000000046),
hidden
1
interface 1EnumVARIANT : IUnknown {
HRESULT Next([in] unsigned long celt, [in] VARIANT* rgvar, [out] unsigned long* pceltFetched);
HRESULT Skip([in] unsigned long celt);
HRESULT Reset();
HRESULT Clone([out] IEnumVARIANT** ppenum) ;
}s

The Next Method

The Next method attempts to get the next celt items in the collection returning them through the array of variants pointed to by
rgvar. It is the responsibility of the caller to allocate enough memory to hold celt variants in the array. The number of items
returned in rgvar is returned in pceltFetched if it is not a NULL pointer. If the number of elements returned is less then celt, the
Next method must return S_FALSE.

The Skip Method

The Skip method attempts to skip over the next celt items in the collection. If the end of the collection is reached before celt items
have been skipped, then the Skip method must return S_FALSE.

The Reset Method

The Reset method resets the enumeration sequence back to the beginning. If possible, the items return by subsequent calls to
Next should return the same items as before. However, sometimes this is impractical for collections whose items are dynamic (such
as a collection of files is a folder).

The Clone Method

The Clone method creates a copy of the current state of the enumeration. Using this method, a particular point in the enumeration
sequence can be recorded, and then returned to at a later time. The returned enumerator is of the same actual interface as the one
that is being cloned.

There is no guarantee that exactly the same set of variants will be enumerated the second time as was enumerated the first.
Although an exact duplicate is desirable, the outcome depends on the collection being enumerated. You may find that it is
impractical for some collections to maintain this condition (for example, an enumeration of the files in a directory).

Prestwood eNews, August 2001 - www.prestwood.com Page 6 of 29
Copyright © 2001 Prestwood. All rights reserved.

Implementing a COM Collection

Create a New Project

The first thing we must do is create a new project. We are going to create an automation server that is compatible with ASP.
1. Select Tools]|Environment Options... from the main menu.

Select the Type Library tab.

Under Language, select Pascal.

Click the OK button.

Select File|New|Other... from the main menu.
Select the ActiveX tab.

Double-click the ActiveX Library icon.

Select View|Type Library from the main menu.

© ©NO AN

. Select the & library in the tree.
10. In the Name field enter "COMExample".

11. Save your project. When prompted for a project filename, enter "COMExample.dpr".

Create the Objects

Using the following table, create all the objects listed following the steps below:

CoClass Interface | Filename CanCreate
FileSystem IFileSystem objFileSystem.pas Yes
Folder IFolder objFolder.pas No
Files IFiles objFiles.pas No
Folders IFolders objFolders.pas No

Select File]New|Other... from the main menu.
Select the ActiveX tab.
Double-click the Automation Object icon.

PN PR

Mew Active Server Dbjeckt

Type the coclass name (refer to the table above) in the CoClass name box.

CoClazz Mame: IFiIES yzhem

Threading Model: I.-'i'-.partment

Instancing: I Multiple Inztance

—hchve Server Type
" Page-level event methods [OnStartPage0nEndPage |

{+ Object Conkest

— Options
[Generate a termplate test script far this object

] Cancel

5. Click the OK button.
6. Select View|Type Library from the main menu.

Prestwood eNews, August 2001 - www.prestwood.com

Copyright © 2001 Prestwood. All rights reserved.

Page 7 of 29

7. Select the a coclass.
8. Select the Flags tab.
9. Set the Can Create box according to the table above.

10. Select the ﬁ interface.

11. Check the Hidden box.

12. Save your project. When prompted for a filename, use the filename from the table above.
13. Repeat for all objects.

We have now created all the objects we will need for this example.

Prestwood eNews, August 2001 - www.prestwood.com Page 8 of 29
Copyright © 2001 Prestwood. All rights reserved.

Implement the FileSystem Object

The FileSystem object will be our root object. Users of your automation server will create and instance of this object and, using it's
properties and methods, retrieve folder and file information. For simplicity's sake, we will not allow the user to modify folders or
files.

Add Methods
The FileSystem object will have three methods.

Method | Description

FolderExists Returns true if the specified folder exists.
FileExists Returns true if the specified file exists.
GetFolder Returns a Folder object represented the specified folder or Null if the folder does not exist.

1. Select View]|Type Library from the main menu.

Select the j "IFileSystem" interface.

N

Click the ™ New Method button in the toolbar.
Select the Attributes tab.

In the Name field type "FileExists".

Select the Parameters tab.

Change Return Type to "WordBool".

Click the Add button to add a new parameter.

In the Name column for the parameter type "Name".
10. In the Type column select "WideString".

© N oA

11. Click the ™ New Method button in the toolbar.

12. Select the Attributes tab.

13. In the Name field type "FolderExists".

14. Select the Parameters tab.

15. Change Return Type to "WordBool".

16. Click the Add button to add a new parameter.

17. In the Name column for the parameter type "Name".
18. In the Type column select "WideString".

19. Click the ¥ New Method button in the toolbar.

20. Select the Attributes tab.

21. In the Name field type "GetFolder".

22. Select the Parameters tab.

23. Change Return Type to "IDispatch".

24. Click the Add button to add a new parameter.

25. In the Name column for the parameter type "Name".
26. In the Type column select "WideString".

27. Save your project.

Prestwood eNews, August 2001 - www.prestwood.com Page 9 of 29
Copyright © 2001 Prestwood. All rights reserved.

Implement the Methods and Properties
The first step is to modify the class declaration of TFiles.

implementation

uses ComServ, FileCtrl, SysUtils, objFolder;

function TFileSystem.FileExists(const Name: WideString): WordBool;
begin

Result := FileExists(Name);
end;

function TFileSystem.FolderExists(const Name: WideString): WordBool;
begin

Result := DirectoryExists(Name);
end;

function TFileSystem.GetFolder(const Name: WideString): IDispatch;

var
Folder : objFolder.TFolder;

begin
if DirectoryExists(Name) then
begin
Folder := objFolder.TFolder.Create;
Folder .Name := ExpandFilename(Name) ;
Result := Folder;
end
else begin
Result := nil;
end;
end;
Prestwood eNews, August 2001 - www.prestwood.com Page 10 of 29

Copyright © 2001 Prestwood. All rights reserved.

Implement Folder Object

The Folder object will be the second object we implement. The folder object itself contains two collections: Folders and Files.

You will note thatwhenever an object is returned by a method, it is always returned as IDispatch. As you recall from the beginner's
guide, the reason you return objects as IDispatch (or IUnknown) is that you are giving the calling application an interface it knows
how to work with (refer to the beginner's guide for more details).

Add Methods and Properties
The Folder object will have two methods and two read-only properties.

Method Description

Folders Returns a Folders object.
Files Returns Files object.

Property Description

Name Read only. Returns the name of the folder.

Path Read only. Returns the path of this folder.

=

Select View|Type Library from the main menu.

Select the ﬁ "IFolder" interface.

N

Click the ™ New Method button in the toolbar.
Select the Attributes tab.

In the Name field type "Folders".

Select the Parameters tab.

No o s

Change Return Type to "IDispatch".

8. Click the ¥ New Method button in the toolbar.
9. Select the Attributes tab.

10. In the Name field type "Files".

11. Select the Parameters tab.

12. Change Return Type to "IDispatch".

13. Click the @ New Property dropdown button in the toolbar.
14. Select Read Only from the menu.

-

2 Read | rite

@M
@ Wytike Cnly

% Read | Write | Write By Ref

15. Select the Attributes tab.

16. In the Name field type "Name".

17. In the ID field type "0".

18. Select "WideString" in the Type field.
19. Select the Flags tab.

20. Check Ul Default.

Prestwood eNews, August 2001 - www.prestwood.com Page 11 of 29
Copyright © 2001 Prestwood. All rights reserved.

21. Click the g New Property dropdown button in the toolbar.

22. Select Read Only from the menu.

| -

=5 Read | Write

E@JM
'_ﬁ Widrite Cinly

o3 Read | Write | Write By Ref

23. Select the Attributes tab.
24. In the Name field type "Path".
25. Select "WideString" in the Type field.

26. Save your project.

Implement the Methods and Properties

Like the FileSystem object, we will not go into detail with the Folder object. Enter the entire implementation below to complete the

Folder object:

type
TFolder = class(TAutoObject, IFolder)
private
FName : string;
procedure SetName (Value : string);
protected
function Get_Name: WideString; safecall;
function Files: IDispatch; safecall;
function Folders: IDispatch; safecall;
function Get_Path: WideString; safecall;
public

property Name : string read FName write SetName;

end;

implementation

uses SysUtils, ComServ, objFolders, objFiles;

function ExtractLastFolder (Path : string)

var
1 : Integer;

begin

if (Length(Path) > 0) and (Path[Length(Path)] = *"\") then

begin
Delete(Path,Length(Path),1);
end;
1 := LastDelimiter("\",Path);
Result := Copy(Path, l+1,Length(Path));

if (Length(Result) > 0) and (Result[Length(Result)] = ":") then

begin
Result := Result+"\";

Prestwood eNews, August 2001 - www.prestwood.com

Copyright © 2001 Prestwood. All rights reserved.

Page 12 of 29

end;
end;

procedure TFolder.SetName (Value : string);

begin
FName := ExpandFilename(Value);
if (Length(FName) > 0) and (FName[Length(FName)] <> *"\") then
begin
FName := FName+"\";
end;
end;

function TFolder.Get_Name: WideString;
begin

Result := ExtractLastFolder(FName);
end;

function TFolder.Files: IDispatch;

var
Files : objFiles.TFiles;

begin

Files := objFiles.TFiles.Create;

Files.Path := FName;

Result := Files;
end;
{mmmsmmmmmsmmmammeeeemm e e s e e mee e e e s S sse e s mee e e e }

function TFolder.Folders: IDispatch;

var
Folders : objFolders.TFolders;

begin
Folders := objFolders.TFolders.Create;
Folders.Path := FName;
Result := Folders;
end;
o e e }

function TFolder.Get_Path: WideString;

var
1 : Integer;

begin
1 := Length(ExtractLastFolder(FName));
Result := Copy(FName,1,Length(FName)-1-1);
end;

Prestwood eNews, August 2001 - www.prestwood.com Page 13 of 29
Copyright © 2001 Prestwood. All rights reserved.

Implement Files Collection

The Files collection is the easiest collection we will create. It will be a collection of strings that represent all the files within a folder.

Add Methods and Properties
The Files collection will have one method and two read-only properties.

Method | Description |

Item Returns a single file in the collection.

Property Description

_NewEnum Read only. Returns an IEnumVARIANT interface.

Count Read only. Returns the number of files in the collection.

NoR

© N oA

Select View|Type Library from the main menu.

Select the ﬁ "IFiles" interface.

Click the ™ New Method button in the toolbar.
Select the Attributes tab.

In the Name field type "ltem".

In the ID field type "0".

Select the Parameters tab.

Change Return Type to "WideString".

Click the Add button to add a new parameter.

. In the Name column for the parameter type "Index".
. In the Type column select "Integer".

. Select the Flags tab.

. Check Ul Default.

. Click the g New Property dropdown button in the toolbar.
. Select Read Only from the menu.

-

5;3 Read | wWrite

@M
iﬁi Wikite Cinily

2% Read | Write | Write By Ref

. Select the Attributes tab.

. In the Name field type "_NewEnum".
. In the 1D field type "-4".

. Select "IUnknown" in the Type field.
. Select the Flags tab.

. Check Hidden.

. Click the L New Property dropdown button in the toolbar.
. Select Read Only from the menu.

Prestwood eNews, August 2001 - www.prestwood.com
Copyright © 2001 Prestwood. All rights reserved.

Page 14 of 29

-

5;3 Read | Write

w5

@ Write Cnly

i3 Read | Write | Write By Ref

24. Select the Attributes tab.
25. In the Name field type "Count".
26. Select "Integer" in the Type field.

27. Save your project.

Modify the Type Library

Before we can fully implement the collection, we need to indicate that in addition to implementing IFiles interface, the Files coclass
also implements the IEnumVARIANT interface.

Select View|Type Library from the main menu.

Select the a "Files" coclass.

Select the Implements tab.

Right-click in the box and select Insert Interface from the popup menu.
Select "IEnumVARIANT" from the list.

Click the OK button.

Save your project.

NoosMwN B

Implement the Class Prototype
The first step to implementing the coclass is to implement the class prototype.

uses Classes, ComObj, ActiveX, COMExample_TLB, Stdvcl;

type
TFiles = class(TAutoObject, IFiles, IEnumVARIANT)
private
FPath string;

Fltems : TStringlList;
FIndex : Integer;
procedure SetPath (Value : string);
protected
function Get_ NewEnum : lUnknown; safecall;
function Get_Count : Integer; safecall;
function ltem (Index : Integer) : WideString; safecall;

{ 1EnumVARIANT }

function Next (celt : LongWord; out rgVar : OleVariant; out pCeltFetched : LongWord) : HRESULT;
stdcall;

function Skip (celt : LongWord) : HRESULT; stdcall;

function Reset : HRESULT; stdcall;

function Clone (out Enum : IEnumVARIANT) : HRESULT; stdcall;
public

procedure AfterConstruction; override;

procedure BeforeDestruction; override;

property Path : string read FPath write SetPath;
end;

Prestwood eNews, August 2001 - www.prestwood.com Page 15 of 29
Copyright © 2001 Prestwood. All rights reserved.

Implement the SetPath, AfterConstruction, and BeforeDestruction methods
The first methods we'll implement on serve a support role in this class. We'll get these methods out of the way first.

implementation

uses ComServ, SysUtils;

procedure TFiles.SetPath (Value : string);

var
SearchRec : TSearchRec;

begin
Fltems.Clear;
FIndex := 0;
FPath := Value;
if FindFirst(FPath+"*_*" faAnyFile,SearchRec) = 0 then

begin
repeat
if not (SearchRec.Attr and faDirectory = faDirectory) then
begin
Fltems.Add(SearchRec.Name);
end;
until FindNext(SearchRec) <> 0;
end;
FindClose(SearchRec);
end;
e e }

procedure TFiles.AfterConstruction;

begin

inherited;

Fltems := TStringList.Create;
end;
e }

procedure TFiles.BeforeDestruction;

begin
Fltems.Free;
inherited;
end;

Prestwood eNews, August 2001 - www.prestwood.com Page 16 of 29
Copyright © 2001 Prestwood. All rights reserved.

Implement the _NewEnum property
The _NewEnum property must return an interface pointer to an object that implements IEnumVARIANT. Because the Files collection
also implements IEnumVARIANT, all we need to do is return a reference to the same object.

function TFiles.Get_ NewEnum: IUnknown;

begin
Result := Self as IEnumVARIANT;
end;

Implement the Count property
The Count property simply returns the number of items in the collection.

function TFiles.Get_Count : Integer;

begin
Result := Fltems.Count;
end;

Implement the Item method
The Item method returns a filename based on the index passed. For simplicity’'s sake, we're going to let the handling of any
exceptions raised when the index is out of bounds fall to the calling process.

function TFiles.ltem (Index : Integer) : WideString;
begin

Result := Fltems[Index-1];
end;

Implement the Next method
The Next method returns the next celt items in the collection.

function TFiles.Next (celt : LongWord; var rgVar : OleVariant; out pCeltFetched : LongWord) : HRESULT;

type

Prestwood eNews, August 2001 - www.prestwood.com Page 17 of 29

Copyright © 2001 Prestwood. All rights reserved.

TVariantList = array [0..0] of OleVariant;

var
1 : LongWord;

begin
1 := 0;

while (I < celt) and (FIndex < Fltems.Count) do

begin

TVariantList(rgVar)[1] := Fltems[Integer(l)+FIndex];

Inc(l);
Inc(FIndex);
end;

it (@pCeltFetched <> nil) then
begin

pCeltFetched := 1;
end;

if (1 = celt) then
begin

Result := S OK;
end
else begin

Result := S FALSE;
end;

end;

Implement the Skip method

The Skip method attempts to skip the next celt items in the collection.

function TFiles.Skip (celt : LongWord) : HRESULT;

begin
ifT (FIndex+Integer(celt)) <= Fltems.Count then
begin
Inc(FIndex,celt);
Result := S_OK;

end
else begin
FIndex := Fltems.Count;
Result := S _FALSE;
end;
end;

Prestwood eNews, August 2001 - www.prestwood.com

Copyright © 2001 Prestwood. All rights reserved.

Page 18 of 29

Implement the Reset method
The Reset method sets the current position to the first item in the collection.

function TFiles.Reset : HRESULT;

begin
Flndex
Result

end;

1
wn O
o
~

Implement the Clone method
The Clone method attempts to make a copy of the collection's current state.

function TFiles.Clone (out ppEnum : I1EnumVARIANT) : HRESULT;

var
Files : TFiles;

begin
Files := TFiles.Create;
Files.Path := FPath;
ppEnum := Files as IEnumVARIANT;
Result := S _0K;

end;

Prestwood eNews, August 2001 - www.prestwood.com Page 19 of 29

Copyright © 2001 Prestwood. All rights reserved.

Implement Folders Collection

The Folders collection is the last collection we will create. It will be a collection of objects that represent all the folders within a
folder.

Add Methods and Properties
The Folders collection will have one method and two read-only properties.

Method \ Description
Iltem Returns a single Folder object in the collection.
Property Description
_NewEnum Read only. Returns an IEnumVARIANT interface.
Count Read only. Returns the number of folders in the collection.
1. Select View|Type Library from the main menu.
2. Select the ﬁ' "IFolders" interface.
3. Click the ¥ New Method button in the toolbar.
4. Select the Attributes tab.
5. In the Name field type "ltem".
6. In the ID field type "0".
7. Select the Parameters tab.
8. Change Return Type to "IDispatch".
9. Click the Add button to add a new parameter.

10. In the Name column for the parameter type "Index".
11. In the Type column select "Integer".

12. Select the Flags tab.

13. Check Ul Default.

14. Click the ‘1\; New Property dropdown button in the toolbar.
15. Select Read Only from the menu.

-

i3 Read | rite

@M
@ Widrite Cinly

A% Read | Write | Write By Ref

16. Select the Attributes tab.

17. In the Name field type " _NewEnum".
18. In the ID field type "-4".

19. Select "lUnknown" in the Type field.
20. Select the Flags tab.

21. Check Hidden.

22. Click the ‘1\; New Property dropdown button in the toolbar.
23. Select Read Only from the menu.

Prestwood eNews, August 2001 - www.prestwood.com Page 20 of 29
Copyright © 2001 Prestwood. All rights reserved.

-

5;3 Read | Write

@M
@ Write Cnly

% Read | Write | Write By Ref

24. Select the Attributes tab.
25. In the Name field type "Count".
26. Select "Integer" in the Type field.

27. Save your project.

Modify the Type Library

Before we can fully implement the collection, we need to indicate that in addition to implementing IFolders interface, the Folders
coclass also implements the IEnumVARIANT interface.

Select View|Type Library from the main menu.

Select the a "Folders" coclass.

Select the Implements tab.

Right-click in the box and select Insert Interface from the popup menu.
Select "IEnumVARIANT" from the list.

Click the OK button.

Save your project.

NoosMwN B

Implement the Class Prototype
The first step to implementing the coclass is to implement the class prototype.

uses Classes, ComObj, ActiveX, COMExample_TLB, Stdvcl;

type
TFolders = class(TAutoObject, IFolders, I1EnumVARIANT)
private
FPath : string;

Fltems : TStringlList;
FIndex : Integer;
procedure SetPath (Value : string);
protected
function Get NewEnum : lUnknown; safecall;
function Get_Count : Integer; safecall;
function ltem (Index : Integer) : WideString; safecall;

{ 1EnumVARIANT }

function Next (celt : LongWord; out rgVar : OleVariant; out pCeltFetched : LongWord) : HRESULT;
stdcall;

function Skip (celt : LongWord) : HRESULT; stdcall;

function Reset : HRESULT; stdcall;

function Clone (out Enum : IEnumVARIANT) : HRESULT; stdcall;
public

procedure AfterConstruction; override;

procedure BeforeDestruction; override;

property Path : string read FPath write SetPath;
end;

Prestwood eNews, August 2001 - www.prestwood.com Page 21 of 29
Copyright © 2001 Prestwood. All rights reserved.

Implement the SetPath, AfterConstruction, and BeforeDestruction methods
The first methods we'll implement on serve a support role in this class. We'll get these methods out of the way first.

implementation

uses ComServ, SysUtils, objFolder;

procedure TFolders.SetPath (Value : string);

var
SearchRec : TSearchRec;

begin
Fltems.Clear;
FiIndex := 0;
FPath := Value;
if FindFirst(FPath+"*_*" faAnyFile,SearchRec) = 0 then

begin
repeat
if (SearchRec.Attr and faDirectory = faDirectory) then
begin
if (SearchRec.Name <> "_") and (SearchRec.Name <> "_._") then
begin
Fltems.Add(SearchRec.Name);
end;
end;
until FindNext(SearchRec) <> 0;
end;
FindClose(SearchRec);
end;
s }

procedure TFolders.AfterConstruction;

begin

inherited;

Fltems := TStringList.Create;
end;

procedure TFolders.BeforeDestruction;

begin
Fltems.Free;
inherited;
end;

Prestwood eNews, August 2001 - www.prestwood.com Page 22 of 29
Copyright © 2001 Prestwood. All rights reserved.

Implement the _NewEnum property
The _NewEnum property must return an interface pointer to an object that implements IEnumVARIANT. Because the Folders
collection also implements IEnumVARIANT, all we need to do is return a reference to the same object.

function TFolders.Get__NewEnum: IUnknown;

begin
Result := Self as IEnumVARIANT;
end;

Implement the Count property
The Count property simply returns the number of items in the collection.

function TFolders.Get Count : Integer;
begin

Result := Fltems.Count;
end;

Implement the Item method
The Item method returns a filename based on the index passed. For simplicity’'s sake, we're going to let the handling of any
exceptions raised when the index is out of bounds fall to the calling process.

function TFolders.ltem (Index : Integer) : IDispatch;

var
Folder : objFolder.TFolder;

begin
Folder := objFolder.TFolder.Create;
Folder.Name := FPath+Fltems[Index-1];
Result := Folder as IDispatch;

end;

Implement the Next method
The Next method returns the next celt items in the collection.

Prestwood eNews, August 2001 - www.prestwood.com Page 23 of 29

Copyright © 2001 Prestwood. All rights reserved.

function TFolders.Next (celt : LongWord; var rgVar : OleVariant; out pCeltFetched : LongWord) : HRESULT;

type
TVariantList = array [0..0] of OleVariant;

var
Folder
1

objFolder.TFolder;
LongWord;

begin
1 := 0;

while (I < celt) and (FIndex < Fltems.Count) do

begin
Folder := objFolder.TFolder.Create;
Folder.Name := FPath+Fltems[Integer(l)+FIndex];
TVariantList(rgVar)[1] := Folder as IDispatch;
Inc(l);
Inc(FIndex);

end;

iT (@pCeltFetched <> nil) then
begin

pCeltFetched := 1;
end;

if (1 = celt) then
begin

Result := S_O0K;
end
else begin

Result := S_FALSE;
end;

end;

Implement the Skip method
The Skip method attempts to skip the next celt items in the collection.

function TFolders.Skip (celt : LongWord) : HRESULT;

begin
if (FIndex+Integer(celt)) <= Fltems.Count then
begin
Inc(FlIndex,celt);
Result := S OK;
end
else begin
FIndex := Fltems.Count;
Result := S_FALSE;
end;
end;

Prestwood eNews, August 2001 - www.prestwood.com Page 24 of 29
Copyright © 2001 Prestwood. All rights reserved.

Implement the Reset method
The Reset method sets the current position to the first item in the collection.

function TFolders.Reset : HRESULT;

begin
Flndex := 0;
Result := S
end;

Implement the Clone method
The Clone method attempts to make a copy of the collection's current state.

function TFolders.Clone (out ppEnum : IEnumVARIANT) : HRESULT;

var
Folders : TFolders;

begin
Folders := TFolders.Create;
Folders.Path := FPath;
ppEnum := Folders as IEnumVARIANT;
Result := S_OK;

end;

Prestwood eNews, August 2001 - www.prestwood.com
Copyright © 2001 Prestwood. All rights reserved.

Page 25 of 29

Testing the Automation Server

There are several ways to test you automation server. The easiest way is to use either ASP or Visual Basic. For the purposes of this
guide, we will limit our testing to ASP.

Once you have compiled your project, register your automation server either with your development tool (if supported) or using
REGSRVR32.EXE located in your system (Windows 95/98/98se/Me) or system32 (Windows NT/2000) directory.

Create a new ASP file on your web server and type in the code at the end of this page. The images referenced in the ASP file are
included in the source code that was packaged with this guide.

Once you have set up your web server, open Internet Explorer and enter the URL for the asp file. You should see a list of files and
folders on the root directory of your C drive.

<%@ Language=VBScript %>
<%

Option Explicit
%>

<html>

<head>
<title>COMExample</title>
<style>

BODY, P, TABLE, TH, TD, DL, DT, DD, LI, UL
{

font-family: verdana;
font-size: 8pt;

font-weight: normal;

color: black;

e

-Border

{

BORDER-TOP: 1px solid black;
BORDER-BOTTOM: 1px solid black;
BORDER-LEFT: 1px solid black;
BORDER-RIGHT: 1px solid black;
e

-BorderBottom

{

BORDER-BOTTOM: 1px solid black;
T

TH

{

color: white;

background-color: black;
font-weight: bold;

T

-Shaded

{

background-color: #cccccc;
b

-LightShaded

{

background-color: #dddddd;
e

-White, .TableHidden

{

background-color: white;

T

-Black

{

background-color: black;

Prestwood eNews, August 2001 - www.prestwood.com Page 26 of 29
Copyright © 2001 Prestwood. All rights reserved.

}
A

{

color: blue;
T
-TableHidden
{

display: none;
1

</style>
</head>
<body>

<%

Dim objFileSystem
Dim objFolder
Dim objSubFolder
Dim objFile

Set objFileSystem = Server.CreateObject('COMExample.FileSystem™)

If Len(Trim(Request(“Folder))) > 0 Then

Set objFolder = objFileSystem.GetFolder(Request(*Folder™))
Else

Set objFolder = objFileSystem.GetFolder(*'c:\")
End IFf

"Folder

Response _Write(''<table border=0 cellspacing=1 cellpadding=0 width="100%">" & vbCrLf)
Response . _Write('<tr>" & vbCrL¥)

Response _Write(''<td class=border>" & vbCrLT)

Response _Write(*'<table border=0 cellspacing=0 cellpadding=2 width="100%" class=black>" & vbCrLfT)
Response . .Write(''<tr>" & vbCrL¥)

Response.Write("'<th colspan=2 valign=top align=left>" & Server.URLEncode(objFolder.Path &
objFolder _Name) & "'</th>" & vbCrLT)

Response .Write("'</tr>" & vbCrLf)
Response _Write(''</table>" & vbCrLf)
Response _Write(''<table border=0 cellspacing=1 cellpadding=2 width="100%" class=white>" & vbCrLf)

"Folders

For Each objSubFolder In objFolder.Folders
Response._Write("<tr>" & vbCrLfF)

Response _Write(''<td width="1%" align=right valign=center class=lightshaded nowrap></td>" & vbCrLfT)

Response._Write(''<td valign=center class=lightshaded nowrap><a href="index.asp?folder=" &
Sggvi¥3URLEncode(objSubFoIder.Path & objSubFolder.Name) & "">" & objSubFolder_Name & "'</td>" &
vbCr

Response _Write(''</tr>" & vbCrLT)
Next

"Files

For Each objFile In objFolder.Files
Response _Write(''<tr>" & vbCrLf)

Response.Write("'<td width="1%" align=right valign=center class=lightshaded nowrap><img src="file.qgif"
border=0 width=16 height=16></td>" & vbCrLT)

Response _Write(''<td valign=center class=lightshaded nowrap>" & Server.URLEncode(objFile) & "</td>" &
vbCrLf)

Response _Write(''</tr>" & vbCrLT)

Prestwood eNews, August 2001 - www.prestwood.com Page 27 of 29
Copyright © 2001 Prestwood. All rights reserved.

Next

Response _Write(''</table>" & vbCrLT)
Response _Write("'</td>" & vbCrLfT)
Response _Write("'</tr>" & vbCrLf)
Response.Write("'</table>" & vbCrLf)
Response _Write(''</td>" & vbCrLfT)
Response _Write(''</tr>" & vbCrLf)

Set objFolder = Nothing
Set objFileSystem = Nothing

%>

</body>
</html>

Prestwood eNews, August 2001 - www.prestwood.com
Copyright © 2001 Prestwood. All rights reserved.

Page 28 of 29

Resources
COM References

1. Microsoft Corporation, Microsoft Developer Network Library, Component Object Model (COM) SDK,
http://msdn.microsoft.com/library/en-us/com/hh/com/comportal 3gn9.asp

2. George Reilly et al, Beginning ATL COM Programming, Wrox, ISBN: 1861000111

3. Sing Li et al, Professional Visual C++ 5: ActiveX/COM Control Programming, Wrox, ISBN: 1861000375

4. Richard Grimes, Professional ATL COM Programming, Wrox, ISBN: 1861001401

5. Richard Grimes, ATL COM Programmer's Reference, Wrox, ISBN: 1861002491

6. Richard Grimes et al, Beginning ATL 3 COM Programming, Wrox, ISBN: 1861001207

7. Alex Homer et al, Beginning Components for ASP, Wrox, ISBN: 1861002882

8. Eric Harmon, Delphi COM Programming, Macmillan Technical Publishing, ISBN: 1578702216

IDL References

1. Microsoft Corporation, Microsoft Developer Network Library, Microsoft Interface Definition Language SDK,
http://msdn.microsoft.com/library/en-us/midl/hh/midl/midistart 4ox1.asp

2. Martin Gudgin, Essential IDL: Interface Design for COM (The DevelopMentor Series), Addison-Wesley Pub Co, ISBN:
0201615959

3. Al Major, COM IDL and Interface Design, Wrox, ISBN: 1861002254

Prestwood eNews, August 2001 - www.prestwood.com Page 29 of 29
Copyright © 2001 Prestwood. All rights reserved.

